# -*- coding: utf-8 -*-
# This is a report using the data from IQAASL.
# IQAASL was a project funded by the Swiss Confederation
# It produces a summary of litter survey results for a defined region.
# These charts serve as the models for the development of plagespropres.ch
# The data is gathered by volunteers.
# Please remember all copyrights apply, please give credit when applicable
# The repo is maintained by the community effective January 01, 2022
# There is ample opportunity to contribute, learn and teach
# contact dev@hammerdirt.ch

# Dies ist ein Bericht, der die Daten von IQAASL verwendet.
# IQAASL war ein von der Schweizerischen Eidgenossenschaft finanziertes Projekt.
# Es erstellt eine Zusammenfassung der Ergebnisse der Littering-Umfrage für eine bestimmte Region.
# Diese Grafiken dienten als Vorlage für die Entwicklung von plagespropres.ch.
# Die Daten werden von Freiwilligen gesammelt.
# Bitte denken Sie daran, dass alle Copyrights gelten, bitte geben Sie den Namen an, wenn zutreffend.
# Das Repo wird ab dem 01. Januar 2022 von der Community gepflegt.
# Es gibt reichlich Gelegenheit, etwas beizutragen, zu lernen und zu lehren.
# Kontakt dev@hammerdirt.ch

# Il s'agit d'un rapport utilisant les données de IQAASL.
# IQAASL était un projet financé par la Confédération suisse.
# Il produit un résumé des résultats de l'enquête sur les déchets sauvages pour une région définie.
# Ces tableaux ont servi de modèles pour le développement de plagespropres.ch
# Les données sont recueillies par des bénévoles.
# N'oubliez pas que tous les droits d'auteur s'appliquent, veuillez indiquer le crédit lorsque cela est possible.
# Le dépôt est maintenu par la communauté à partir du 1er janvier 2022.
# Il y a de nombreuses possibilités de contribuer, d'apprendre et d'enseigner.
# contact dev@hammerdirt.ch

# sys, file and nav packages:
import datetime as dt

# math packages:
import pandas as pd
import numpy as np
from scipy import stats
from statsmodels.distributions.empirical_distribution import ECDF

# charting:
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib import ticker
from matplotlib import colors
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.gridspec import GridSpec
import seaborn as sns

# home brew utitilties
import resources.chart_kwargs as ck
import resources.sr_ut as sut

# images and display
from IPython.display import Markdown as md


# set some parameters:
start_date = "2020-03-01"
end_date ="2021-05-31"
start_end = [start_date, end_date]
a_fail_rate = 50
unit_label = "p/100m"

a_color = "saddlebrown"

# colors for gradients
cmap2 = ck.cmap2
colors_palette = ck.colors_palette

# set the maps
bassin_map = "resources/maps/survey_areas/linth_scaled.jpeg"

# top level aggregation
top = "All survey areas"

# define the feature level and components
this_feature = {'slug':'linth', 'name':"Linth survey area", 'level':'river_bassin'}
this_level = 'water_name_slug'
this_bassin = "linth"
bassin_label = "Linth survey area"

lakes_of_interest = ['walensee', 'zurichsee']
# explanatory variables:
luse_exp = ["% buildings", "% recreation", "% agg", "% woods", "streets km", "intersects"]

# common aggregations
agg_pcs_quantity = {unit_label:"sum", "quantity":"sum"}
agg_pcs_median = {unit_label:"median", "quantity":"sum"}

# aggregation of dimensional data
agg_dims = {"total_w":"sum", "mac_plast_w":"sum", "area":"sum", "length":"sum"}

# columns needed
use_these_cols = ["loc_date" ,
                  "% to buildings",
                  "% to trans", 
                  "% to recreation",
                  "% to agg",
                  "% to woods",
                  "population",
                  this_level,
                  "streets km",
                  "intersects",
                  "length",
                  "groupname",
                  "code"
                 ]

# get your data:
dfBeaches = pd.read_csv("resources/beaches_with_land_use_rates.csv")
dfCodes = pd.read_csv("resources/codes_with_group_names_2015.csv")
dfDims = pd.read_csv("resources/corrected_dims.csv")

# set the index of the beach data to location slug
dfBeaches.set_index("slug", inplace=True)

# map water_name_slug to water_name
wname_wname = dfBeaches[["water_name_slug","water_name"]].reset_index(drop=True).drop_duplicates().set_index("water_name_slug")

dfCodes.set_index("code", inplace=True)

codes_to_change = [
    ["G74", "description", "Insulation foams"],
    ["G940", "description", "Foamed EVA for crafts and sports"],
    ["G96", "description", "Sanitary-pads/tampons, applicators"],
    ["G178", "description", "Metal bottle caps and lids"],
    ["G82", "description", "Expanded foams 2.5cm - 50cm"],
    ["G81", "description", "Expanded foams .5cm - 2.5cm"],
    ["G117", "description", "Expanded foams < 5mm"],
    ["G75", "description", "Plastic/foamed polystyrene 0 - 2.5cm"],
    ["G76", "description", "Plastic/foamed polystyrene 2.5cm - 50cm"],
    ["G24", "description", "Plastic lid rings"],
    ["G33", "description", "Lids for togo drinks plastic"],
    ["G3", "description", "Plastic bags, carier bags"],
    ["G204", "description", "Bricks, pipes not plastic"],
    ["G904", "description", "Plastic fireworks"],
    ["G211", "description", "Swabs, bandaging, medical"],
]

for x in codes_to_change:
    dfCodes = sut.shorten_the_value(x, dfCodes)

# the surveyor designated the object as aluminum instead of metal
dfCodes.loc["G708", "material"] = "Metal"

# make a map to the code descriptions
code_description_map = dfCodes.description

# make a map to the code materials
code_material_map = dfCodes.material

4. Linth

Below: Map of survey locations March 2020 - May 2021. Marker diameter = the mean survey result in pieces of litter per 100 meters (p/100m).

sut.display_image_ipython(bassin_map, thumb=(800,450))
_images/linth_sa_3_0.png

4.1. Sample locations and land use characteristics

# this is the data before the expanded foams and fragmented plastics are aggregated to Gfrags and Gfoams
before_agg = pd.read_csv("resources/checked_before_agg_sdata_eos_2020_21.csv")

# this is the aggregated survey data that is being used
# a_data is all the data in the survey period
a_data = pd.read_csv(F"resources/checked_sdata_eos_2020_21.csv")
a_data["date"] = pd.to_datetime(a_data.date)

a_data.rename(columns={"% to agg":"% ag", "% to recreation": "% recreation", "% to woods":"% woods", "% to buildings":"% buildings"}, inplace=True)
luse_exp = ["% buildings", "% recreation", "% ag", "% woods", "streets km", "intersects"]

fd = sut.feature_data(a_data, this_feature["level"], these_features=[this_feature["slug"]])

# cumulative statistics for each code
code_totals = sut.the_aggregated_object_values(fd, agg=agg_pcs_median, description_map=code_description_map, material_map=code_material_map)    

# daily survey totals
dt_all = fd.groupby(["loc_date","location",this_level, "city","date"], as_index=False).agg(agg_pcs_quantity )

# the materials table
fd_mat_totals = sut.the_ratio_object_to_total(code_totals)

# summary statistics, nsamples, nmunicipalities, names of citys, population
t = sut.make_table_values(fd, col_nunique=["location", "loc_date", "city"], col_sum=["quantity"], col_median=[])

# make a map to the population values for each survey location/city
fd_pop_map = dfBeaches.loc[fd.location.unique()][["city", "population"]].copy()
fd_pop_map.drop_duplicates(inplace=True)

# update t with the population data
t.update(sut.make_table_values(fd_pop_map, col_nunique=["city"], col_sum=["population"], col_median=[]))

# update t with the list of locations from fd
t.update({"locations":fd.location.unique()})

# the lake and river names in the survey area
lakes = dfBeaches.loc[(dfBeaches.index.isin(t["locations"]))&(dfBeaches.water == "l")]["water_name"].unique()
rivers = dfBeaches.loc[(dfBeaches.index.isin(t["locations"]))&(dfBeaches.water == "r")]["water_name"].unique()

# join the strings into comma separated list
obj_string = "{:,}".format(t["quantity"])
surv_string = "{:,}".format(t["loc_date"])
pop_string = "{:,}".format(int(t["population"]))

# make strings
date_quantity_context = F"For the period between {start_date[:-3]} and {end_date[:-3]}, a total of {obj_string } objects were removed and identified over the course of {surv_string} surveys."
geo_context = F"The {bassin_label} results include {t['location']} different locations, {t['city']} different municipalities with a combined population of approximately {pop_string}."
# admin_context = F"There are {t['city']} different municipalities represented in these results with a combined population of approximately {pop_string}."
munis_joined = ", ".join(sorted(fd_pop_map["city"]))
lakes_joined = ", ".join(sorted(lakes))
rivers_joined = ", ".join(sorted(rivers))

# put that all together:
lake_string = F"""
{date_quantity_context} {geo_context }

*{bassin_label} lakes:*\n\n>{lakes_joined}

*{bassin_label} rivers:*\n\n>{rivers_joined}

*{bassin_label} municipalities:*\n\n>{munis_joined}
"""
md(lake_string)

For the period between 2020-03 and 2021-05, a total of 9,412 objects were removed and identified over the course of 112 surveys. The Linth survey area results include 40 different locations, 17 different municipalities with a combined population of approximately 612,111.

Linth survey area lakes:

Quatre Cantons, Walensee, Zugersee, Zurichsee

Linth survey area rivers:

Dorfbach, Escherkanal, Jona, Limmat, Linthkanal, Reuss, Seez, Sihl

Linth survey area municipalities:

Dietikon, Freienbach, Glarus Nord, Hünenberg, Küsnacht (ZH), Merenschwand, Quarten, Rapperswil-Jona, Richterswil, Schmerikon, Stäfa, Unterengstringen, Walenstadt, Weesen, Weggis, Zug, Zürich

4.1.1. Land use profile of the surveys

The land use is reported as the percent of total area attributed to each land use category within a 1500m radius of the survey location.

Streets are reported as the total number of kilometers of streets within the 1500m radius. Intersects is also an ordinal ranking of the number of rivers/canals that intersect a lake within 1500m of the survey location.

The ratio of the number of samples under varying land use profiles gives an indication of the environmental and economic conditions of the survey sites.

For more information Land use profile

Below: Distribution of land use characteristics.

sns.set_style("whitegrid")
# the ratio of samples with respect to the different land use characteristics for each survey area
# the data to use is the unique combinations of loc_date and the land_use charcteristics of each location
project_profile = a_data[["loc_date", this_feature["level"], *luse_exp]].drop_duplicates()
dt_nw = fd[["loc_date", this_feature["level"], *luse_exp]].drop_duplicates()

# labels and levels
comps = [this_feature["slug"]]
comp_labels = {x:wname_wname.loc[x][0] for x in fd[this_level].unique()}

fig, axs = plt.subplots(2, 3, figsize=(9,8), sharey="row")

for i, n in enumerate(luse_exp):
    r = i%2
    c = i%3
    ax=axs[r,c]
    for element in[this_feature["slug"]]:
        data=dt_nw[dt_nw[this_feature["level"]] == element][n].values
        the_data = ECDF(data)
        
        # plot that
        sns.lineplot(x=the_data.x, y=the_data.y, ax=ax, label=bassin_label)
    
    # get the dist for all here
    a_all_surveys =  ECDF(project_profile[n].values)
    
    # plot that    
    sns.lineplot(x=a_all_surveys.x, y=a_all_surveys.y, ax=ax, label="All survey areas", color="magenta")
    
    # get the median from the data
    the_median = np.median(data)
    
    # plot the median and drop horzontal and vertical lines
    ax.scatter([the_median], 0.5, color="red",s=50, linewidth=2, zorder=100, label="the median")
    ax.vlines(x=the_median, ymin=0, ymax=0.5, color="red", linewidth=2)
    ax.hlines(xmax=the_median, xmin=0, y=0.5, color="red", linewidth=2)
    
    if i <= 3:
        if c == 0:            
            ax.set_ylabel("Ratio of samples", **ck.xlab_k)
        ax.xaxis.set_major_formatter(ticker.PercentFormatter(1.0, 0, "%"))        
    else:
        pass
      
    
    handles, labels = ax.get_legend_handles_labels()
    ax.get_legend().remove()    
    ax.set_xlabel(n, **ck.xlab_k)
plt.tight_layout()
plt.subplots_adjust(top=.9, hspace=.3)
plt.suptitle("Land use within 1500m of the survey location", ha="center", y=1, fontsize=16)
fig.legend(handles, labels, bbox_to_anchor=(.5,.94), loc="center", ncol=3)    

plt.show()
_images/linth_sa_8_0.png

4.1.2. Cumulative totals by water feature

# aggregate the dimensional data
dims_parameters = dict(this_level=this_level, 
                       locations=fd.location.unique(), 
                       start_end=start_end, 
                       agg_dims=agg_dims)

dims_table = sut.gather_dimensional_data(dfDims, **dims_parameters)

# map the qauntity to the dimensional data
q_map = fd.groupby(this_level).quantity.sum()

# collect the number of samples from the survey total data:
for name in dims_table.index:
    dims_table.loc[name, "samples"] = fd[fd[this_level] == name].loc_date.nunique()
    dims_table.loc[name, "quantity"] = q_map[name]

# add proper names for display
dims_table["water_feature"] = dims_table.index.map(lambda x: comp_labels[x])
dims_table.set_index("water_feature", inplace=True)
   
# get the sum of all survey areas
dims_table.loc[this_feature["name"]]= dims_table.sum(numeric_only=True, axis=0)

# for display
dims_table.sort_values(by=["quantity"], ascending=False, inplace=True)
dims_table.rename(columns={"samples":"samples","quantity":"items", "total_w":"total kg", "mac_plast_w":"plastic kg", "area":"m²", "length":"meters"}, inplace=True)

# format kilos and text strings
dims_table["plastic kg"] = dims_table["plastic kg"]/1000
dims_table[["m²", "meters", "samples", "items"]] = dims_table[["m²", "meters", "samples", "items"]].applymap(lambda x: "{:,}".format(int(x)))
dims_table[["plastic kg", "total kg"]] = dims_table[["plastic kg", "total kg"]].applymap(lambda x: "{:.2f}".format(x))

# figure caption
agg_caption = F"""
*__Below:__ The cumulative weights and measures for the {this_feature["name"]} and water bodies.*
"""
md(agg_caption)

Below: The cumulative weights and measures for the Linth survey area and water bodies.

# make table
data = dims_table.reset_index()
colLabels = data.columns

fig, ax = plt.subplots(figsize=(len(colLabels)*1.8,len(data)*.7))
sut.hide_spines_ticks_grids(ax)

table_one = sut.make_a_table(ax, data.values, colLabels=colLabels, colWidths=[.28, *[.12]*6], a_color=a_color)
table_one.get_celld()[(0,0)].get_text().set_text(" ")

plt.tight_layout()
plt.show()
_images/linth_sa_11_0.png

4.1.3. Distribution of survey results

# the surveys to chart
fd_dindex = dt_all.set_index("date")

# all the other surveys
ots = dict(level_to_exclude=this_feature["level"], components_to_exclude=fd[this_feature["level"]].unique())
dts_date = sut.the_other_surveys(a_data, **ots)
dts_date.head()

# the survey totals from all other survey areas
dts_date = dts_date.groupby(["loc_date","date"], as_index=False)[unit_label].sum()
dts_date.set_index("date", inplace=True)

# get the monthly or quarterly results for the feature
resample_plot, rate = sut.quarterly_or_monthly_values(fd_dindex , this_feature["name"], vals=unit_label, quarterly=["ticino"])

# scale the chart as needed to accomodate for extreme values
y_lim = 95
y_limit = np.percentile(dts_date[unit_label], y_lim)

# label for the chart that alerts to the scale
not_included = F"Values greater than {round(y_limit, 1)} not shown."

# figure caption
chart_notes = F"""
*__Left:__ {this_feature["name"]}, {start_date[:7]} through {end_date[:7]}, n={t["loc_date"]}. {not_included} __Right:__ {this_feature["name"]} empirical cumulative distribution of survey results.*
"""
md(chart_notes )

Left: Linth survey area, 2020-03 through 2021-05, n=112. Values greater than 1594.8 not shown. Right: Linth survey area empirical cumulative distribution of survey results.

# months locator, can be confusing
# https://matplotlib.org/stable/api/dates_api.html
months = mdates.MonthLocator(interval=1)
months_fmt = mdates.DateFormatter("%b")
days = mdates.DayLocator(interval=7)

fig, axs = plt.subplots(1,2, figsize=(10,5))

# the survey totals by day
ax = axs[0]

# feature surveys
sns.scatterplot(data=dts_date, x=dts_date.index, y=unit_label, label=top, color="black", alpha=0.4,  ax=ax)
# all other surveys
sns.scatterplot(data=fd_dindex, x=fd_dindex.index, y=unit_label, label=this_feature["name"], color="red", s=34, ec="white", ax=ax)

# monthly or quaterly plot
sns.lineplot(data=resample_plot, x=resample_plot.index, y=resample_plot, label=F"{this_feature['name']}: {rate} median", color="magenta", ax=ax)

ax.set_ylim(0,y_limit )
ax.set_ylabel(unit_label, **ck.xlab_k14)

ax.set_xlabel("")
ax.xaxis.set_minor_locator(days)
ax.xaxis.set_major_formatter(months_fmt)
ax.legend()

# the cumlative distributions:
axtwo = axs[1]

# the feature of interest
feature_ecd = ECDF(dt_all[unit_label].values)    
sns.lineplot(x=feature_ecd.x, y=feature_ecd.y, color="darkblue", ax=axtwo, label=this_feature["name"])

# the other features
other_features = ECDF(dts_date[unit_label].values)
sns.lineplot(x=other_features.x, y=other_features.y, color="magenta", label=top, linewidth=1, ax=axtwo)

axtwo.set_xlabel(unit_label, **ck.xlab_k14)
axtwo.set_ylabel("Ratio of samples", **ck.xlab_k14)

plt.tight_layout()
plt.show()
_images/linth_sa_14_0.png

4.1.4. Summary data and material types

Left: Linth survey area summary of survey totals. Right: Linth survey area material type and percent of total.

# get the basic statistics from pd.describe
cs = dt_all[unit_label].describe().round(2)

# change the names
csx = sut.change_series_index_labels(cs, sut.create_summary_table_index(unit_label, lang="EN"))

combined_summary = sut.fmt_combined_summary(csx, nf=[])

fd_mat_totals = sut.fmt_pct_of_total(fd_mat_totals)
fd_mat_totals = sut.make_string_format(fd_mat_totals)

# applly new column names for printing
cols_to_use = {"material":"Material","quantity":"Quantity", "% of total":"% of total"}
fd_mat_t = fd_mat_totals[cols_to_use.keys()].values

# make tables
fig, axs = plt.subplots(1,2, figsize=(8,6))

# summary table
# names for the table columns
a_col = [this_feature["name"], "total"]

axone = axs[0]
sut.hide_spines_ticks_grids(axone)

table_two = sut.make_a_table(axone, combined_summary,  colLabels=a_col, colWidths=[.5,.25,.25],  bbox=[0,0,1,1], **{"loc":"lower center"})
table_two.get_celld()[(0,0)].get_text().set_text(" ")
table_two.set_fontsize(14)

# material table
axtwo = axs[1]
axtwo.set_xlabel(" ")
sut.hide_spines_ticks_grids(axtwo)

table_three = sut.make_a_table(axtwo, fd_mat_t,  colLabels=list(cols_to_use.values()), colWidths=[.4, .3,.3],  bbox=[0,0,1,1], **{"loc":"lower center"})
table_three.get_celld()[(0,0)].get_text().set_text(" ")

plt.tight_layout()
plt.subplots_adjust(wspace=0.2)
plt.show()
_images/linth_sa_17_0.png

4.2. The most common objects

The most common objects are the ten most abundant by quantity AND/OR objects identified in at least 50% of all surveys.

# the top ten by quantity
most_abundant = code_totals.sort_values(by="quantity", ascending=False)[:10]

# the most common
most_common = code_totals[code_totals["fail rate"] >= a_fail_rate].sort_values(by="quantity", ascending=False)

# merge with most_common and drop duplicates
m_common = pd.concat([most_abundant, most_common]).drop_duplicates()

# get percent of total
m_common_percent_of_total = m_common.quantity.sum()/code_totals.quantity.sum()

# figure caption
rb_string = F"""
*__Below:__ {this_feature['name']} most common objects: fail rate >/= {a_fail_rate}%  and/or top ten by quantity. Combined, the most abundant objects represent {int(m_common_percent_of_total*100)}% of all objects found.*

Note : {unit_label} = median survey value.
"""
md(rb_string)

Below: Linth survey area most common objects: fail rate >/= 50% and/or top ten by quantity. Combined, the most abundant objects represent 66% of all objects found.

Note : p/100m = median survey value.

# format values for table
m_common["item"] = m_common.index.map(lambda x: code_description_map.loc[x])
m_common["% of total"] = m_common["% of total"].map(lambda x: F"{x}%")
m_common["quantity"] = m_common.quantity.map(lambda x: "{:,}".format(x))
m_common["fail rate"] = m_common["fail rate"].map(lambda x: F"{x}%")
m_common[unit_label] = m_common[unit_label].map(lambda x: F"{round(x,1)}")

cols_to_use = {"item":"Item","quantity":"Quantity", "% of total":"% of total", "fail rate":"Fail rate", unit_label:unit_label}
all_survey_areas = m_common[cols_to_use.keys()].values

fig, axs = plt.subplots(figsize=(10,len(m_common)*.7))

sut.hide_spines_ticks_grids(axs)

table_four = sut.make_a_table(axs, all_survey_areas,  colLabels=list(cols_to_use.values()), colWidths=[.52, .12,.12,.12, .12],  bbox=[0,0,1,1], **{"loc":"lower center"})
table_four.get_celld()[(0,0)].get_text().set_text(" ")
table_four.set_fontsize(14)
plt.tight_layout()
plt.show()
_images/linth_sa_20_0.png

4.2.1. Most common objects by water feature

Below: Linth survey area most common objects: median p/100m

# aggregated survey totals for the most common codes for all the water features
m_common_st = fd[fd.code.isin(m_common.index)].groupby([this_level, "loc_date","code"], as_index=False).agg(agg_pcs_quantity)
m_common_ft = m_common_st.groupby([this_level, "code"], as_index=False)[unit_label].median()

# proper name of water feature for display
m_common_ft["f_name"] = m_common_ft[this_level].map(lambda x: comp_labels[x])

# map the desctiption to the code
m_common_ft["item"] = m_common_ft.code.map(lambda x: code_description_map.loc[x])

# pivot that
m_c_p = m_common_ft[["item", unit_label, "f_name"]].pivot(columns="f_name", index="item")

# quash the hierarchal column index
m_c_p.columns = m_c_p.columns.get_level_values(1)

# the aggregated totals for the survey area

c = sut.aggregate_to_group_name(fd[fd.code.isin(m_common.index)], column="code", name=this_feature["name"], val="med")

m_c_p[this_feature["name"]]= sut.change_series_index_labels(c, {x:code_description_map.loc[x] for x in c.index})

# the aggregated totals of all the data
c = sut.aggregate_to_group_name(a_data[(a_data.code.isin(m_common.index))], column="code", name=top, val="med")
m_c_p[top] = sut.change_series_index_labels(c, {x:code_description_map.loc[x] for x in c.index})

# chart that
fig, ax  = plt.subplots(figsize=(len(m_c_p.columns)*.9,len(m_c_p)*.9))
axone = ax

sns.heatmap(m_c_p, ax=axone, cmap=cmap2, annot=True, annot_kws={"fontsize":12}, fmt=".1f", square=True, cbar=False, linewidth=.1, linecolor="white")
axone.set_xlabel("")
axone.set_ylabel("")
axone.tick_params(labelsize=14, which="both", axis="x")
axone.tick_params(labelsize=12, which="both", axis="y")

plt.setp(axone.get_xticklabels(), rotation=90)

plt.show()
_images/linth_sa_23_0.png

4.2.2. Most common objects monthly average

# collect the survey results of the most common objects
m_common_m = fd[(fd.code.isin(m_common.index))].groupby(["loc_date","date","code", "groupname"], as_index=False).agg(agg_pcs_quantity)
m_common_m.set_index("date", inplace=True)

# set the order of the chart, group the codes by groupname columns
an_order = m_common_m.groupby(["code","groupname"], as_index=False).quantity.sum().sort_values(by="groupname")["code"].values

# a manager dict for the monthly results of each code
mgr = {}

# get the monhtly results for each code:
for a_group in an_order:
    # resample by month
    a_plot = m_common_m[(m_common_m.code==a_group)][unit_label].resample("M").mean().fillna(0)
    this_group = {a_group:a_plot}
    mgr.update(this_group)

monthly_mc = F"""
*__Below:__ {this_feature["name"]}, monthly average survey result {unit_label}, with detail of the most common objects.*
"""
md(monthly_mc)

Below: Linth survey area, monthly average survey result p/100m, with detail of the most common objects.

months={
    0:"Jan",
    1:"Feb",
    2:"Mar",
    3:"Apr",
    4:"May",
    5:"Jun",
    6:"Jul",
    7:"Aug",
    8:"Sep",
    9:"Oct",
    10:"Nov",
    11:"Dec"
}

# convenience function to lable x axis
def new_month(x):
    if x <= 11:
        this_month = x
    else:
        this_month=x-12    
    return this_month

fig, ax = plt.subplots(figsize=(10,7))

# define a bottom
bottom = [0]*len(mgr["G27"])

# the monhtly survey average for all objects and locations
monthly_fd = fd.groupby(["loc_date", "date"], as_index=False).agg(agg_pcs_quantity)
monthly_fd.set_index("date", inplace=True)
m_fd = monthly_fd[unit_label].resample("M").mean().fillna(0)

# define the xaxis
this_x = [i for i,x in  enumerate(m_fd.index)]

# plot the monthly total survey average
ax.bar(this_x, m_fd.to_numpy(), color=a_color, alpha=0.2, linewidth=1, edgecolor="teal", width=1, label="Monthly survey average") 

# plot the monthly survey average of the most common objects
for i, a_group in enumerate(an_order): 
    
    # define the axis
    this_x = [i for i,x in  enumerate(mgr[a_group].index)]
    
    # collect the month
    this_month = [x.month for i,x in enumerate(mgr[a_group].index)]
    
    # if i == 0 laydown the first bars
    if i == 0:
        ax.bar(this_x, mgr[a_group].to_numpy(), label=a_group, color=colors_palette[a_group], linewidth=1, alpha=0.6 ) 
    # else use the previous results to define the bottom
    else:
        bottom += mgr[an_order[i-1]].to_numpy()        
        ax.bar(this_x, mgr[a_group].to_numpy(), bottom=bottom, label=a_group, color=colors_palette[a_group], linewidth=1, alpha=0.8)
        
# collect the handles and labels from the legend
handles, labels = ax.get_legend_handles_labels()

# set the location of the x ticks
ax.xaxis.set_major_locator(ticker.FixedLocator([i for i in np.arange(len(this_x))]))
ax.set_ylabel(unit_label, **ck.xlab_k14)

# label the xticks by month
axisticks = ax.get_xticks()
labelsx = [months[new_month(x-1)] for x in  this_month]
plt.xticks(ticks=axisticks, labels=labelsx)

# make the legend
# swap out codes for descriptions
new_labels = [code_description_map.loc[x] for x in labels[1:]]
new_labels = new_labels[::-1]

# insert a label for the monthly average
new_labels.insert(0,"Monthly survey average")
handles = [handles[0], *handles[1:][::-1]]
    
plt.legend(handles=handles, labels=new_labels, bbox_to_anchor=(.5, -.05), loc="upper center",  ncol=2, fontsize=14)       
plt.show()
_images/linth_sa_26_0.png

4.3. Survey results and land use

The land use mix is a unique representation of the type and amplitude of the economic activity and the environmental conditions around the survey location. The key indicators from the survey results are compared against the land use rates for a radius of 1500m from the survey location.

An association is a relationship between the survey results and the land use profile that is unlikely due to chance. The magnitude of the relationship is neither defined nor linear.

Ranked correlation is a non-parametric test to determine if there is a statistically significant relationship between land use and the objects identified in a litter survey.

The method used is the Spearman’s rho or Spearmans ranked correlation coefficient. The test results are evaluated at p<0.05 for all valid lake samples in the survey area.

  1. Red/rose is a positive association

  2. Yellow is a negative association

  3. White means that p>0.05, there is no statistical basis to assume an association

corr_data = fd[(fd.code.isin(m_common.index))&(fd.water_name_slug.isin(lakes_of_interest))].copy()

alert_less_than_100 = len(corr_data.loc_date.unique()) <= 100

if alert_less_than_100:
    warning = F"""**There are less than 100 samples, proceed with caution. Beach litter surveys have alot of variance**"""
else:
    warning = ""

association = F"""*__Below:__ {this_feature["name"]} ranked correlation of the most common objects with respect to land use profile.
For all valid lake samples n={len(corr_data.loc_date.unique())}.*

{warning}
"""
md(association)

Below: Linth survey area ranked correlation of the most common objects with respect to land use profile. For all valid lake samples n=87.

There are less than 100 samples, proceed with caution. Beach litter surveys have alot of variance

# chart the results of test for association
fig, axs = plt.subplots(len(m_common.index),len(luse_exp), figsize=(len(luse_exp)+7,len(m_common.index)+1), sharey="row")

# the test is conducted on the survey results for each code
for i,code in enumerate(m_common.index):
    # slice the data
    data = corr_data[corr_data.code == code]
    
    # run the test on for each land use feature
    for j, n in enumerate(luse_exp):       
        # assign ax and set some parameters
        ax=axs[i, j]
        ax.grid(False)
        ax.tick_params(axis="both", which="both",bottom=False,top=False,labelbottom=False, labelleft=False, left=False)
        
        # check the axis and set titles and labels       
        if i == 0:
            ax.set_title(F"{n}")
        else:
            pass
        
        if j == 0:
            ax.set_ylabel(F"{code_description_map[code]}", rotation=0, ha="right", **ck.xlab_k14)
            ax.set_xlabel(" ")
        else:
            ax.set_xlabel(" ")
            ax.set_ylabel(" ")
        # run test
        _, corr, a_p = sut.make_plot_with_spearmans(data, ax, n)
        
        # if siginficant set adjust color to direction
        if a_p < 0.05:
            if corr > 0:
                ax.patch.set_facecolor("salmon")
                ax.patch.set_alpha(0.5)
            else:
                ax.patch.set_facecolor("palegoldenrod")
                ax.patch.set_alpha(0.5)

plt.tight_layout()
plt.subplots_adjust(wspace=0, hspace=0)
plt.show()
_images/linth_sa_30_0.png

Key:  if p>0.05 = white,  if p < 0.05 and \(\rho\) > 0 = red,  if p < 0.05 and \(\rho\) < 0 = yellow

4.4. Utility of the objects found

The utility type is based on the utilization of the object prior to it being discarded or object description if the original use is undetermined. Identified objects are classified into one of 260 predefined categories. The categories are grouped according to utilization or item description.

  • wastewater: items released from water treatment plants includes items likely toilet flushed

  • micro plastics (< 5mm): fragmented plastics and pre-production plastic resins

  • infrastructure: items related to construction and maintenance of buildings, roads and water/power supplies

  • food and drink: all materials related to consuming food and drink

  • agriculture: primarily industrial sheeting i.e., mulch and row covers, greenhouses, soil fumigation, bale wraps. Includes hard plastics for agricultural fencing, flowerpots etc.

  • tobacco: primarily cigarette filters, includes all smoking related material

  • recreation: objects related to sports and leisure i.e., fishing, hunting, hiking etc.

  • packaging non food and drink: packaging material not identified as food, drink nor tobacco related

  • plastic fragments: plastic pieces of undetermined origin or use

  • personal items: accessories, hygiene and clothing related

See the annex for the complete list of objects identified, includes descriptions and group classification. The section Code groups describes each code group in detail and provides a comprehensive list of all objects in a group.



Below: Linth survey area utility of objects found % of total by water feature. Fragmented objects with no clear identification remain classified by size.

# code groups resluts aggregated by survey
groups = ["loc_date","groupname"]
cg_t = fd.groupby([this_level,*groups], as_index=False).agg(agg_pcs_quantity)

# the total per water feature
cg_tq = cg_t.groupby(this_level).quantity.sum()

# get the fail rates for each group per survey
cg_t["fail"]=False
cg_t["fail"] = cg_t.quantity.where(lambda x: x == 0, True)

# aggregate all that for each municipality
agg_this = {unit_label:"median", "quantity":"sum", "fail":"sum", "loc_date":"nunique"} 
cg_t = cg_t.groupby([this_level, "groupname"], as_index=False).agg(agg_this)

# assign survey area total to each record
for a_feature in cg_tq.index:
    cg_t.loc[cg_t[this_level] == a_feature, "f_total"] = cg_tq.loc[a_feature]

# get the percent of total for each group for each survey area
cg_t["pt"] = (cg_t.quantity/cg_t.f_total).round(2)

# pivot that
data_table = cg_t.pivot(columns=this_level, index="groupname", values="pt")

# repeat for the survey area
data_table[bassin_label] = sut.aggregate_to_group_name(fd, unit_label=unit_label, column="groupname", name=bassin_label, val="pt")

# repeat for all the data
data_table[top] = sut.aggregate_to_group_name(a_data, unit_label=unit_label, column="groupname", name=top, val="pt")

data = data_table
data.rename(columns={x:wname_wname.loc[x][0] for x in data.columns[:-2]}, inplace=True)

fig, ax = plt.subplots(figsize=(10,10))

axone = ax
sns.heatmap(data , ax=axone, cmap=cmap2, annot=True, annot_kws={"fontsize":12}, cbar=False, fmt=".0%", linewidth=.1, square=True, linecolor="white")

axone.set_ylabel("")
axone.set_xlabel("")
axone.tick_params(labelsize=14, which="both", axis="both", labeltop=False, labelbottom=True)

plt.setp(axone.get_xticklabels(), rotation=90, fontsize=14)
plt.setp(axone.get_yticklabels(), rotation=0, fontsize=14)

plt.show()
_images/linth_sa_34_0.png
cg_medpcm = F"""
<br></br>
*__Below:__ {this_feature["name"]} utility of objects found median {unit_label}. Fragmented objects with no clear identification remain classified by size.*
"""
md(cg_medpcm)



Below: Linth survey area utility of objects found median p/100m. Fragmented objects with no clear identification remain classified by size.

# median p/50m of all the water features
data_table = cg_t.pivot(columns="water_name_slug", index="groupname", values=unit_label)

# the survey area columns
data_table[bassin_label] = sut.aggregate_to_group_name(fd, unit_label=unit_label, column="groupname", name=bassin_label, val="med")

# column for all the surveys
data_table[top] = sut.aggregate_to_group_name(a_data, unit_label=unit_label, column="groupname", name=top, val="med")

# merge with data_table
data = data_table
data.rename(columns={x:wname_wname.loc[x][0] for x in data.columns[:-2]}, inplace=True)
fig, ax = plt.subplots(figsize=(10,10))

axone = ax
sns.heatmap(data , ax=axone, cmap=cmap2, annot=True, annot_kws={"fontsize":12}, fmt="g", cbar=False, linewidth=.1, square=True, linecolor="white")

axone.set_xlabel("")
axone.set_ylabel("")
axone.tick_params(labelsize=14, which="both", axis="both", labeltop=False, labelbottom=True)

plt.setp(axone.get_xticklabels(), rotation=90, fontsize=14)
plt.setp(axone.get_yticklabels(), rotation=0, fontsize=14)

plt.show()
_images/linth_sa_36_0.png

4.5. Rivers

rivers = fd[fd.w_t == "r"].copy()
r_smps = rivers.groupby(["loc_date", "date", "location", "water_name_slug"], as_index=False).agg(agg_pcs_quantity)
l_smps = fd[fd.w_t == "l"].groupby(["loc_date","date","location", "water_name_slug"], as_index=False).agg(agg_pcs_quantity)

chart_notes = F"""
*__Left:__ {this_feature["name"]} rivers, {start_date[:7]} through {end_date[:7]}, n={len(r_smps.loc_date.unique())}. {not_included} __Right:__ Summary data.*
"""
md(chart_notes )

Left: Linth survey area rivers, 2020-03 through 2021-05, n=19. Values greater than 1594.8 not shown. Right: Summary data.

cs = r_smps[unit_label].describe().round(2)

# add project totals
cs["total objects"] = r_smps.quantity.sum()

# change the names
csx = sut.change_series_index_labels(cs, sut.create_summary_table_index(unit_label, lang="EN"))

combined_summary = sut.fmt_combined_summary(csx, nf=[])

# make the charts
fig = plt.figure(figsize=(11,6))

aspec = fig.add_gridspec(ncols=11, nrows=3)

ax = fig.add_subplot(aspec[:, :6])

line_label = F"{rate} median:{top}"

sns.scatterplot(data=l_smps, x="date", y=unit_label, color="black", alpha=0.4, label="Lake surveys", ax=ax)
sns.scatterplot(data=r_smps, x="date", y=unit_label, color="red", s=34, ec="white",label="River surveys", ax=ax)

ax.set_ylim(-10,y_limit )

ax.set_xlabel("")
ax.set_ylabel(unit_label, **ck.xlab_k14)

ax.xaxis.set_minor_locator(days)
ax.xaxis.set_major_formatter(months_fmt)

a_col = [this_feature["name"], "total"]

axone = fig.add_subplot(aspec[:, 7:])
sut.hide_spines_ticks_grids(axone)

table_five = sut.make_a_table(axone, combined_summary,  colLabels=a_col, colWidths=[.5,.25,.25],  bbox=[0,0,1,1], **{"loc":"lower center"})
table_five.get_celld()[(0,0)].get_text().set_text(" ")


plt.show()
_images/linth_sa_39_0.png

4.5.1. Rivers most common objects

riv_mcommon = F"""
*__Below:__ {this_feature["name"]} rivers, most common objects {unit_label}: median survey value*
"""
md(riv_mcommon)

Below: Linth survey area rivers, most common objects p/100m: median survey value

# the most common items rivers
r_codes = rivers.groupby("code").agg({"quantity":"sum", "fail":"sum", unit_label:"median"})
r_codes["Fail rate"] = (r_codes.fail/r_smps.loc_date.nunique()*100).astype("int")

# top ten
r_byq = r_codes.sort_values(by="quantity", ascending=False)[:10].index

# most common
r_byfail = r_codes[r_codes["Fail rate"] > 49.99].index
r_most_common = list(set(r_byq) | set(r_byfail))

# format for display
r_mc= r_codes.loc[r_most_common].copy()
r_mc["item"] = r_mc.index.map(lambda x: code_description_map.loc[x])
r_mc.sort_values(by="quantity", ascending=False, inplace=True)

r_mc["% of total"]=((r_mc.quantity/r_codes.quantity.sum())*100).astype("int")
r_mc["% of total"] = r_mc["% of total"].map(lambda x: F"{x}%")
r_mc["quantity"] = r_mc.quantity.map(lambda x: "{:,}".format(x))
r_mc["Fail rate"] = r_mc["Fail rate"].map(lambda x: F"{x}%")
r_mc["p/50m"] = r_mc[unit_label].map(lambda x: F"{np.ceil(x)}")
r_mc.rename(columns=cols_to_use, inplace=True)

data=r_mc[["Item","Quantity", "% of total", "Fail rate", unit_label]]

fig, axs = plt.subplots(figsize=(13,len(data)*.7))

sut.hide_spines_ticks_grids(axs)

table_six = sut.make_a_table(axs, data.values,  colLabels=list(data.columns), colWidths=[.52, *[.12]*4], **{"loc":"lower center"})
table_six.get_celld()[(0,0)].get_text().set_text(" ")


plt.show()
plt.tight_layout()
plt.close()
_images/linth_sa_42_0.png

4.6. Annex

4.6.1. Fragmented foams and plastics by size

The table below contains the “Gfoam” and “Gfrags” components grouped for analysis. Objects labeled expanded foams are grouped as Gfoam and includes all expanded polystyrene foamed plastics > 0.5 cm. Plastic pieces and objects made of combined plastic and foamed plastic materials > 0.5 cm. are grouped for analysis as Gfrags.

Below: Linth survey area fragmented foams and plastics by size group.

# collect the data before aggregating foams for all locations in the survye area
# group by loc_date and code
# Combine the different sizes of fragmented plastics and styrofoam
# the codes for the foams
some_foams = ["G81", "G82", "G83", "G74"]

# the codes for the fragmented plastics
some_frag_plas = list(before_agg[before_agg.groupname == "plastic pieces"].code.unique())

fd_frags_foams = before_agg[(before_agg.code.isin([*some_frag_plas, *some_foams]))&(before_agg.location.isin(t["locations"]))].groupby(["loc_date","code"], as_index=False).agg(agg_pcs_quantity)
fd_frags_foams = fd_frags_foams.groupby("code").agg(agg_pcs_median)

# add code description and format for printing
fd_frags_foams["item"] = fd_frags_foams.index.map(lambda x: code_description_map.loc[x])
fd_frags_foams["% of total"] = (fd_frags_foams.quantity/fd.quantity.sum()*100).round(2)
fd_frags_foams["% of total"] = fd_frags_foams["% of total"].map(lambda x: F"{x}%")
fd_frags_foams["quantity"] = fd_frags_foams["quantity"].map(lambda x: F"{x:,}")

# table data
data = fd_frags_foams[["item",unit_label, "quantity", "% of total"]]

fig, axs = plt.subplots(figsize=(len(data.columns)*2.4,len(data)*.7))

sut.hide_spines_ticks_grids(axs)

table_seven = sut.make_a_table(axs,data.values,  colLabels=data.columns, colWidths=[.6, .13, .13, .13], a_color=a_color)
table_seven.get_celld()[(0,0)].get_text().set_text(" ")
table_seven.set_fontsize(14)

plt.show()
plt.tight_layout()
plt.close()
_images/linth_sa_45_0.png

4.6.2. The survey locations

# display the survey locations
disp_columns = ["latitude", "longitude", "city"]
disp_beaches = dfBeaches.loc[t["locations"]][disp_columns]
disp_beaches.reset_index(inplace=True)
disp_beaches.rename(columns={"slug":"location"}, inplace=True)
disp_beaches.set_index("location", inplace=True, drop=True)

disp_beaches
latitude longitude city
location
limmat_dietikon_keiserp 47.407989 8.409540 Dietikon
zugerseecholler_cham_blarerm 47.178216 8.480013 Zug
vierwaldstattersee_weggis_schoberls_1 47.044532 8.418569 Weggis
vierwaldstattersee_weggis_schoberls_2 47.043953 8.417308 Weggis
vierwaldstattersee_weggis_schoberls_3 47.029957 8.410801 Weggis
limmat_unterengstringen_oggierbuhrer 47.409400 8.446933 Unterengstringen
limmat_zuerich_wagnerc 47.403496 8.477770 Zürich
limmat_zurich_mortensena_meiera 47.400252 8.485411 Zürich
sihl_zuerich_eggerskoehlingera 47.381898 8.538328 Zürich
gasi-strand 47.128442 9.110831 Weesen
rastplatz-stampf 47.215177 8.844286 Rapperswil-Jona
zuerichsee_richterswil_benkoem_2 47.217646 8.698713 Richterswil
walensee_walenstadt_wysse 47.121828 9.299552 Walenstadt
pfafikon-bad 47.206766 8.774182 Freienbach
zurichsee_kusnachterhorn_thirkell-whitej 47.317685 8.576860 Küsnacht (ZH)
zurichsee_wollishofen_langendorfm 47.345890 8.536155 Zürich
untertenzen 47.115260 9.254780 Quarten
zurcher-strand 47.364200 8.537420 Zürich
jona-river-rastplatz 47.216100 8.844430 Rapperswil-Jona
reuss_hunenberg_eberhardy 47.232976 8.401012 Hünenberg
reuss_ottenbach_schoenenbergerl 47.278354 8.394224 Merenschwand
zuerichsee_staefa_hennm 47.234643 8.769881 Stäfa
linthdammweg 47.131790 9.091910 Weesen
mols-rocks 47.114343 9.288174 Quarten
seeflechsen 47.130223 9.103400 Glarus Nord
seemuhlestrasse-strand 47.128640 9.295100 Walenstadt
muhlehorn-dorf 47.118448 9.172124 Glarus Nord
zuerichsee_waedenswil_colomboc_1 47.219547 8.691961 Richterswil
murg-bad 47.115307 9.215691 Quarten
schmerikon-bahnhof-strand 47.224780 8.944180 Schmerikon
aabach 47.220989 8.940365 Schmerikon
sihl_zuerich_eichenbergerd 47.339588 8.516697 Zürich
kusnachter-dorfbach-tobelweg-1-4 47.317770 8.588258 Küsnacht (ZH)
flibach-river-right-bank 47.133742 9.105461 Weesen
linth_route9brucke 47.125730 9.117340 Glarus Nord
seez_spennwiesenbrucke 47.114948 9.310123 Walenstadt
linth_mollis 47.131370 9.094768 Glarus Nord
seez 47.119830 9.300251 Walenstadt
limmat_zuerich_suterdglauserp 47.394539 8.513443 Zürich
strandbeiz 47.215862 8.843098 Rapperswil-Jona

4.6.3. Inventory of items

pd.set_option("display.max_rows", None)
complete_inventory = code_totals[code_totals.quantity>0][["item", "groupname", "quantity", "% of total","fail rate"]]
complete_inventory.sort_values(by="quantity", ascending=False)
item groupname quantity % of total fail rate
code
G27 Cigarette filters tobacco 2012 21.38 87
Gfrags Fragmented plastics plastic pieces 917 9.74 75
Gfoam Expanded polystyrene infrastructure 898 9.54 65
G200 Glass drink bottles, pieces food and drink 621 6.60 66
G30 Food wrappers; candy, snacks food and drink 558 5.93 85
G67 Industrial sheeting agriculture 462 4.91 55
G941 Packaging films nonfood or unknown packaging non food 238 2.53 39
G74 Insulation foams infrastructure 228 2.42 38
G25 Tobacco; plastic packaging, containers tobacco 178 1.89 48
G178 Metal bottle caps and lids food and drink 173 1.84 52
G156 Paper fragments packaging non food 151 1.60 41
G117 Expanded foams < 5mm micro plastics (< 5mm) 134 1.42 18
G89 Plastic construction waste infrastructure 117 1.24 41
G177 Foil wrappers, aluminum foil food and drink 112 1.19 39
G923 Tissue, toilet paper, napkins, paper towels personal items 106 1.13 28
G73 Foamed items & pieces (non packaging/insulatio... recreation 95 1.01 11
G96 Sanitary-pads/tampons, applicators waste water 93 0.99 13
G24 Plastic lid rings food and drink 85 0.90 38
G21 Drink lids food and drink 80 0.85 34
G112 Industrial pellets (nurdles) micro plastics (< 5mm) 72 0.76 19
G211 Swabs, bandaging, medical personal items 71 0.75 25
G155 Fireworks paper tubes and fragments recreation 70 0.74 9
G95 Cotton bud/swab sticks waste water 70 0.74 32
G31 Lollypop sticks food and drink 63 0.67 30
G23 Lids unidentified packaging non food 61 0.65 29
G904 Plastic fireworks recreation 59 0.63 24
G153 Cups, food containers, wrappers (paper) food and drink 58 0.62 23
G106 Plastic fragments angular <5mm micro plastics (< 5mm) 58 0.62 13
G10 Food containers single use foamed or plastic food and drink 56 0.59 21
G922 Labels, bar codes packaging non food 54 0.57 22
G125 Balloons and balloon sticks recreation 50 0.53 23
G35 Straws and stirrers food and drink 49 0.52 31
G32 Toys and party favors recreation 47 0.50 27
G940 Foamed EVA for crafts and sports recreation 46 0.49 8
G928 Ribbons and bows personal items 43 0.46 9
G66 Straps/bands; hard, plastic package fastener infrastructure 41 0.44 25
G203 Tableware ceramic or glass, cups, plates, pieces food and drink 38 0.40 11
G159 Corks food and drink 38 0.40 15
G148 Cardboard (boxes and fragments) packaging non food 38 0.40 11
G936 Sheeting ag. greenhouse film agriculture 37 0.39 12
G50 String < 1cm recreation 36 0.38 24
G115 Foamed plastic <5mm micro plastics (< 5mm) 34 0.36 4
G165 Ice cream sticks, toothpicks, chopsticks food and drink 31 0.33 13
G208 Glass or ceramic fragments > 2.5 cm unclassified 29 0.31 13
G91 Biomass holder waste water 28 0.30 12
G186 Industrial scrap infrastructure 28 0.30 15
G33 Lids for togo drinks plastic food and drink 28 0.30 16
G87 Tape, masking/duct/packing infrastructure 26 0.28 16
G131 Rubber bands personal items 26 0.28 16
G146 Paper, cardboard packaging non food 23 0.24 10
G917 Terracotta balls unclassified 23 0.24 6
G157 Paper packaging non food 22 0.23 5
G3 Plastic bags, carier bags packaging non food 22 0.23 13
G34 Cutlery, plates and trays food and drink 22 0.23 14
G905 Hair clip, hair ties, personal accessories pl... personal items 21 0.22 10
G98 Diapers - wipes waste water 20 0.21 13
G152 Cigarette boxes, tobacco related paper/cardboard tobacco 20 0.21 9
G22 Lids for chemicals, detergents (non-food) infrastructure 19 0.20 10
G942 Plastic shavings from lathes, CNC machining unclassified 18 0.19 8
G154 Newspapers or magazines personal items 18 0.19 5
G135 Clothes, footware, headware, gloves personal items 16 0.17 8
G149 Paper packaging packaging non food 16 0.17 4
G100 Medical; containers/tubes/ packaging waste water 15 0.16 8
G170 Wood (processed) agriculture 14 0.15 5
G90 Plastic flower pots agriculture 14 0.15 8
G137 Clothing, towels & rags personal items 14 0.15 10
G201 Jars, includes pieces food and drink 13 0.14 8
G921 Ceramic tile and pieces infrastructure 12 0.13 6
G213 Paraffin wax recreation 12 0.13 5
G210 Other glass/ceramic unclassified 12 0.13 3
G142 Rope , string or nets recreation 12 0.13 9
G26 Cigarette lighters tobacco 12 0.13 9
G59 Fishing line monofilament (angling) recreation 11 0.12 8
G4 Small plastic bags; freezer, zip-lock etc. packaging non food 11 0.12 7
G175 Cans, beverage food and drink 11 0.12 8
G191 Wire and mesh agriculture 11 0.12 9
G198 Other metal pieces < 50cm infrastructure 10 0.11 8
G93 Cable ties; steggel, zip, zap straps infrastructure 10 0.11 8
G927 String trimmer line, used to cut grass, weeds,... infrastructure 9 0.10 6
G925 Packets: desiccant/ moisture absorbers, plasti... packaging non food 9 0.10 7
G20 Caps and lids packaging non food 9 0.10 4
G943 Fencing agriculture, plastic agriculture 9 0.10 4
G919 Nails, screws, bolts etc. infrastructure 9 0.10 3
G194 Cables, metal wire(s) often inside rubber or p... infrastructure 9 0.10 4
G28 Pens, lids, mechanical pencils etc. personal items 9 0.10 6
G7 Drink bottles < = 0.5L food and drink 8 0.08 6
G933 Bags, cases for accessories; glasses, electron... personal items 8 0.08 5
G134 Other rubber unclassified 8 0.08 6
G914 Paperclips, clothespins, plastic utility items personal items 8 0.08 5
G167 Matches or fireworks recreation 8 0.08 2
G161 Processed timber agriculture 8 0.08 6
G101 Dog feces bag personal items 8 0.08 7
G65 Buckets agriculture 8 0.08 4
G124 Other plastic or foam products unclassified 7 0.07 5
G908 Tape; electrical, insulating infrastructure 7 0.07 6
G126 Balls recreation 7 0.07 5
G929 Electronics and pieces; sensors, headsets etc. personal items 6 0.06 5
G926 Chewing gum, often contains plastics food and drink 6 0.06 4
G901 Mask medical, synthetic personal items 5 0.05 4
G68 Fiberglass fragments infrastructure 5 0.05 4
G204 Bricks, pipes not plastic infrastructure 5 0.05 3
G197 Other metal infrastructure 5 0.05 4
G103 Plastic fragments rounded <5mm micro plastics (< 5mm) 5 0.05 2
G70 Shotgun cartridges recreation 4 0.04 3
G930 Foam earplugs personal items 4 0.04 2
G931 Tape-caution for barrier, police, construction... infrastructure 4 0.04 2
G119 Sheetlike user plastic (>1mm) micro plastics (< 5mm) 4 0.04 1
G48 Rope, synthetic recreation 4 0.04 2
G29 Combs, brushes and sunglasses personal items 4 0.04 3
G43 Tags fishing or industry (security tags, seals) recreation 4 0.04 2
G171 Other wood < 50cm agriculture 4 0.04 1
G49 Rope > 1cm recreation 4 0.04 2
G133 Condoms incl. packaging waste water 4 0.04 2
G145 Other textiles personal items 3 0.03 1
G5 Generic plastic bags packaging non food 3 0.03 1
G939 Flowers, plants plastic personal items 3 0.03 2
G12 Cosmetics, non-beach use personal care containers personal items 3 0.03 2
G938 Toothpicks, dental floss plastic food and drink 3 0.03 2
G114 Films <5mm micro plastics (< 5mm) 3 0.03 2
G36 Bags/sacks heavy duty plastic for 25 Kg or mor... agriculture 3 0.03 2
G99 Syringes - needles personal items 3 0.03 2
G6 Bottles and containers, plastic non food/drink packaging non food 3 0.03 1
G916 Pencils and pieces personal items 3 0.03 2
G11 Cosmetics for the beach, e.g. sunblock recreation 3 0.03 2
G999 No objects found on this survey unclassified 2 0.02 1
G918 Safety pins, paper clips, small metal utility ... personal items 2 0.02 1
G128 Tires and belts unclassified 2 0.02 1
G2 Bags packaging non food 2 0.02 0
G934 Sandbag, plastic for flood, erosion control etc.. agriculture 2 0.02 0
G107 Cylindrical pellets < 5mm micro plastics (< 5mm) 2 0.02 0
G111 Spheruloid pellets < 5mm micro plastics (< 5mm) 2 0.02 1
G8 Drink bottles > 0.5L food and drink 2 0.02 1
G38 Coverings; plastic packaging, sheeting for pro... unclassified 2 0.02 1
G118 Small industrial spheres <5mm micro plastics (< 5mm) 2 0.02 1
G176 Cans, food food and drink 2 0.02 1
G108 disk pellets <5mm micro plastics (< 5mm) 2 0.02 1
G138 Shoes and sandals personal items 2 0.02 1
G140 Bags, burlap, hessian, jute or hemp agriculture 1 0.01 0
G151 Cartons, Tetrapacks food and drink 1 0.01 0
G935 Walking stick pads and pieces, often elastomer... personal items 1 0.01 0
G144 Tampons waste water 1 0.01 0
G147 Paper bags packaging non food 1 0.01 0
G173 Other unclassified 1 0.01 0
G109 Flat pellets <5mm micro plastics (< 5mm) 1 0.01 0
G52 Nets and pieces recreation 1 0.01 0
G129 Inner tubes and rubber sheets unclassified 1 0.01 0
G214 Oil/tar infrastructure 1 0.01 0
G195 Batteries - household personal items 1 0.01 0
G190 Paint cans infrastructure 1 0.01 0
G185 Middle size containers unclassified 1 0.01 0
G179 Disposable BBQs food and drink 1 0.01 0
G39 Gloves personal items 1 0.01 0
G14 Engine oil bottles unclassified 1 0.01 0
G40 Gloves household/gardening personal items 1 0.01 0
G41 Glove industrial/professional agriculture 1 0.01 0
G53 Nets and pieces < 50cm recreation 1 0.01 0
G92 Bait containers recreation 1 0.01 0
G61 Other fishing related recreation 1 0.01 0
G71 Shoes sandals personal items 1 0.01 0
G132 Bobbers (fishing) recreation 1 0.01 0
G172 Other wood > 50cm agriculture 1 0.01 0
G900 Gloves latex personal protective equipment personal items 1 0.01 0
G902 Mask medical, cloth personal items 1 0.01 0
G903 Hand sanitizer containers & packets personal items 1 0.01 0
G907 coffee capsules plastic food and drink 1 0.01 0
G17 Injection gun cartridge infrastructure 1 0.01 0
G913 Pacifier personal items 1 0.01 0
G139 Backpacks personal items 1 0.01 0